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of saturn ’s rings . 67

in order to be permanent , and that this is inconsistent with its outer and inner parts moving
with the same angular velocity . Supposing the ring to be fluid and continuous , we found
that it will be necessarily broken up into small portions .

We conclude , therefore , that the rings must consist of disconnected particles ; these may
be either solid or liquid , but they must be independent . The entire system of rings must
therefore consist either of a series of many concentric rings , each moving with its own velocity ,
and having its own systems of waves, or else of a confused multitude of revolving particles , not
arranged in rings , and continually coming into collision with each other .

Taking the first case, we found that in an indefinite number of possible cases the mutual
perturbations of two rings , stable in themselves , might mount up in time to a destructive
magnitude , and that such cases must continually occur in an extensive system like that of
Saturn , the only retarding cause being the possible irregularity of the rings .

The result of long-continued disturbance was found to be the spreading out of the rings
in breadth , the outer rings pressing outwards , while the inner rings press inwards .

The final result , therefore , of the mechanical theory is, that the only system of rings which
can exist is one composed of an indefinite number of unconnected particles , revolving round
the planet with different velocities according to their respective distances . These particles may
be arranged in series of narrow rings , or they may move through each other irregularly . In
the first case the destruction of the system will be very slow, in the second case it will be more
rapid , but there may be a tendency towards an arrangement in narrow rings , which may retard
the process .

We are not able to ascertain by observation the constitution of the two outer divisions of
the system of rings , but the inner ring is certainly transparent , for the limb of Saturn has
been observed through it . It is also certain , that though the space occupied by the ring is
transparent , it is not through the material parts of it that Saturn was seen, for his limb was
observed without distortion ; which shows that there was no refraction , and therefore that the
rays did not pass through a medium at all , but between the solid or liquid particles of which
the ring is composed . Here then we have an optical argument in favour of the theory of
independent particles as the material of the rings . The two outer rings may be of the same
nature , but not so exceedingly rare that a ray of light can pass through their whole thickness
without encountering one of the particles .

Finally , the two outer rings have been observed for 200 years , and it appears , from the
careful analysis of all the observations by M. Struve , that the second ring is broader than when
first observed , and that its inner edge is nearer the planet than formerly . The inner ring also
is suspected to be approaching the planet ever since its discovery in 1850. These appearances
seem to indicate the same slow progress of the rings towards separation which we found to be
the result of theory , and the remark , that the inner edge of the inner ring is most distinct ,
seems to indicate that the approach towards the planet is less rapid near the edge , as we had
reason to conjecture . As to the apparent unchangeableness of the exterior diameter of the
outer ring , we must remember that the outer rings are certainly far more dense than the inner
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Generalities on the Granular Gases Equation Introduction

The Granular Gases Equation

The granular gases equation describes the behavior of a dilute gas of particles when the
only interactions taken into account are binary inelastic collisions

This concerns various systems, such as pollen dissemination, avalanches, planetary rings,
etc.1, ...

2

1see also Kawai, Shida, J. Phys. Soc. Japan (1990)
2Courtesy of T. Pöschel
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Generalities on the Granular Gases Equation Introduction

The clustering phenomenon
Numerical method. Rescaling velocity method, using some qualitative properties of the
equation3.
Results. Local density, ε = 0.05: granular gas (left) vs. perfect elastic gas (right), at
time T = 2.
Numerical parameters. 2dx × 3dv model, Nx = Ny = 100, Nvx = Nvy = Nvz = 32.

→ Consistent with experiments (Brillantov, Pöschel, 2004).

3F. Filbet, TR, JCP (2013)
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Generalities on the Granular Gases Equation Modeling

A Boltzmann-like Kinetic Equation

General Scaled Equation
Study of a particle distribution function fε(t, x, v), depending on time t > 0, space
x ∈ Ω ⊂ Rd and velocity v ∈ Rd, solution to

(1)


∂fε

∂t
+ v · ∇xf

ε = 1
ε

Qe(fε, fε),

fε(0, x, v) = f0(x, v),

where Qe is the inelastic collision operator, describing the microscopic collision dynamic
and ε is a scaling parameter.

→ ε is the Knudsen number, ratio of the mean free path between collision by the
typical length scale of the problem;

→ Qe only acts on the v variable;
→ Boundary conditions in space needed to describe completely the problem.
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Generalities on the Granular Gases Equation Modeling

Modeling Assumptions

Microscopic dynamics
Localized interactions: particles interact only by contact (collision), at a given time
t and a given position x;
Diluted gases: collisions occur between two particles at the same time (we neglect
the collisions of three particles or more);
Micro-reversible collisions: the collision dynamics is time-reversible (at the
microscopic level);
Boltzmann chaos assumption: the velocity of two colliding particles are uncorrelated
before collision.

The microscopic collision process is said to be
→ elastic when the kinetic energy is conserved during a collision (this is for example

the case for a perfect molecular gas);
→ inelastic when a fraction of the kinetic energy is dissipated during a collision (this is

the case of a granular gas).
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Generalities on the Granular Gases Equation Modeling

Inelastic Hard Spheres

Microscopic dynamics: conservation of impulsion and dissipation of kinetic energy;
Normal restitution coefficient e ∈ [0, 1];
Parametrization of the post-collisional velocities (v′, v′

∗) as a function of the
pre-collisional velocities (v, v∗):


v′ = v − 1 + e

2 ((v − v∗) · ω)ω,

v′
∗ = v∗ + 1 + e

2 ((v − v∗) · ω)ω,

where ω ∈ Sd−1 is the impact direction;

ω

v

v∗

v
′

∗

v
′

(green is elastic, red is inelastic)
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Generalities on the Granular Gases Equation Modeling

The Inelastic Collision Operator (weak form)
For two velocities v, v∗ ∈ Rd, we set u := v − v∗, û := u

|u| ; if ψ is a smooth test
function, ψ′ := ψ(v′), ψ∗ := ψ(v∗), ψ′

∗ := ψ(v′
∗).

Weak form of the collision operator (σ-representation)
∫
Rd

Qe(f, f)(v)ψ(v) dv = 1
2

∫
Rd×Rd×Sd−1

|u| f∗ f (ψ′ + ψ′
∗ − ψ − ψ∗)

b(û · σ) dσ dv dv∗,

where b is the collisional cross section, which verifies

0 < β1 ≤ b(x) ≤ β2 < ∞, ∀x ∈ [−1, 1].

Setting b̃(t) := 3|t|b(1 − 2t2), one also has the ω-representation:∫
Rd

Qe(f, f)(v)ψ(v) dv = 1
2

∫
Rd×Rd×Sd−1

|u| f∗ f
(
ψ′ + ψ′

∗ − ψ − ψ∗
)

b̃(û) dω dv dv∗.
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b(û · σ) dσ dv dv∗,

where b is the collisional cross section, which verifies

0 < β1 ≤ b(x) ≤ β2 < ∞, ∀x ∈ [−1, 1].

Setting b̃(t) := 3|t|b(1 − 2t2), one also has the ω-representation:∫
Rd

Qe(f, f)(v)ψ(v) dv = 1
2

∫
Rd×Rd×Sd−1

|u| f∗ f
(
ψ′ + ψ′

∗ − ψ − ψ∗
)
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Generalities on the Granular Gases Equation Modeling

The Inelastic Collision Operator (strong form)
If e is non-zero, (v, v∗, σ) → (v′, v′

∗, σ) is not an involution, so one has to work a little
bit more than in the elastic case for the strong form of the collision operator:

Strong form of the collision operator (σ-representation)

Qe(f, f)(v) =
∫
Rd×Sd−1

|u|
e
b+

e (û · σ)
( ′f ′f∗ − |u| f f∗

)
dσ dv∗,

with b+
e (s) given by

(2) b+
e (s) = b

(
(1 + e2)s− (1 − e2)
(1 + e2) − (1 − e2)s

) √
2√

(1 + e2) − (1 − e2)s
.

In these expressions, the precollisional velocities are given in the σ-representation by

′v = v + v∗

2 + 1 − e

4e (v − v∗) + 1 + e

4e |v − v∗|σ,

′v∗ = v + v∗

2 − 1 − e

4e (v − v∗) − 1 + e

4e |v − v∗|σ.(3)
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Macroscopic Properties and Hydrodynamic Limits
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Macroscopic Properties and Hydrodynamic Limits An Energy Dissipative Model

Macroscopic Properties of the Operator

Conservation of mass and momentum, dissipation of kinetic energy:

∫
Rd

Qe(f, f)(v)

( 1
v

|v|2

)
dv =

( 0
0

−(1 − e2)D(f, f)

)

where D(f, f) ≥ 0 is the energy dissipation functional:

D(f, f) := b1

∫
Rd×Rd

f f∗ |v − v∗|3 dv dv∗, b1 ≥ 0,

≥ b1ρ
5/2
(∫

R
f(v) |v − u|2dv

) 3
2

≥ 0.

Microscopic consequence: Concentration in the velocity space!
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Macroscopic Properties and Hydrodynamic Limits An Energy Dissipative Model

Some Consequences of the Energy Dissipation 1/2
If e < 1 (true inelasticity),

Trivial equilibria (Dirac masses) because of the temperature dissipation:
linearized study difficult;
Particle velocities highly correlated;
Mathematical analysis possible only in the L1 Banach setting: no scalar
products, perturbative theory intricate;
No formal entropy dissipation structure4: very few energy estimates available,
large time behavior difficult to investigate:∫
Rd

Qe(f, f)(v) log f(v) dv = 1
2

∫
Rd×Rd×Sd−1

f∗ f

[
log
(
f ′ f ′

∗

f f∗

)
− f ′ f ′

∗

f f∗
+ 1
]
B dσ dv dv∗

+ 1
2

∫
Rd×Rd×Sd−1

(
f ′

∗ f
′ − f∗ f

)
B dσ dv dv∗.

4Nevertheless, extensive numerical experiments show that the Boltzmann entropy would be a
good candidate, see Garcia, Maynar, Mischler, Mouhot, TR, Trizac, JSM (2015)
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Macroscopic Properties and Hydrodynamic Limits An Energy Dissipative Model

Some Consequences of the Energy Dissipation 2/2

If e < 1 (true inelasticity),
Macroscopic description formally given by the pressureless gas dynamics:
creation of singularities in finite time;
Creation of spatial d’inhomogeneities and zero temperature zones (clustering
phenomenon).
Meaningful even in dimension 1: the collision process is given by

{v′, v′
∗} = {v, v∗} or

{
v + v∗

2
± e

2
(v − v∗)

}
.
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Macroscopic Properties and Hydrodynamic Limits Hydrodynamic limit(s)

Monokinetic Distribution and Pressureless Dynamics

Define the first moments of f as

(ρ, ρu, E , dρT ) =
∫
Rd

f(v)φ(v)dv, φ(v) =
(
1, v, |v|2/2, |v − u|2

)
.

Dissipation of energy formally yields that when ε → 0,

f(t, x, v) ⇀ε→0 ρ(x)δ0 (v − u(x)) , ∀(x, v) ∈ Ω × Rd,

where, using the macroscopic properties of Qe,
∂tρ+ ∇x · (ρu) = 0,

∂t(ρu) + ∇x · (ρu ⊗ u) = 0.

Pressureless Euler/Sticky particles equation: Generation of δ-singularity in finite time
and transient clusters formation.
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Macroscopic Properties and Hydrodynamic Limits Hydrodynamic limit(s)

Quasi-Elastic Limit and Compressible Euler Dynamics
One can show5 that if 1 − e ∼ ε, then

∂f

∂t
+ v · ∇xf = Q1(f, f)

ε
+ 1 − e

ε
I(f, f) + O

(
(1 − e)2

ε

)
.

for an explicit friction operator I.
When ε → 0, there is a compressible Euler-like dynamics6

∂tρ+ ∇x · (ρu) = 0,
∂t(ρu) + ∇x · (ρ(u ⊗ u + TI)) = 0,

∂tE + ∇x · (u(E + ρT )) = −Cdρ
2T

3
2 ,

which also exhibits cluster formation7.

5G. Toscani (2004)
6The closure is made thanks to the Maxwellian

Mρ,u,T (v) =
ρ

(2πT )d/2 exp
(

−
|v − u|2

2T

)
.

7Carrillo-Salueña, 2006 and then Carrillo-Poëschel-Salueña 2009 for the Navier-Stokes case
Thomas Rey (Université de Lille) Granular Gases Séminaire MOCO 15 / 33



Macroscopic Properties and Hydrodynamic Limits A State of the Art on the Granular Gases Equation

Space homogeneous setting

Let us consider the space-independent equation ∂tf = Qe(f, f)
Cauchy problem for different types of kernels: Toscani (2000),
Bobylev-Carrillo-Gamba (2000), Bobylev-Cercignani-Toscani (2003),
Mischler-Mouhot-Ricard (2006);
Qualitative behavior: Bobylev-Gamba-Panferov (2004),
Gamba-Panferov-Villani (2004);
Cooling process and asymptotic/self-similar behavior: Li-Toscani (2004),
Mischler-Mouhot (2006), Alonso-Lods (2010, 2012), TR (2012);
Stability and convergence towards the (unique) self-similar solution:
Mischler-Mouhot (2009), Alonso-Lods (2011, 2013), Cañizo-Lods (2016),
Alonso-Bagland-Cheng-Lods (2017);
Entropy decay: No rigorous result but some study in that direction by
Garcia-Maynar-Mischler-Mouhot-TR-Trizac (2015);
Review papers: Villani (2006), Carrillo-Hu-Ma-TR (2021).
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Macroscopic Properties and Hydrodynamic Limits A State of the Art on the Granular Gases Equation

Space inhomogeneous setting

Full space-dependent equation ∂tf + v · ∇xf = Qe(f, f)
Cauchy problem 1d: Benedetto-Caglioti-Pulvirenti (1997, 2001, 2002), with
an idea due to Bony (1987);
Cauchy problem near vacuum: Alonso (2009);
Cauchy problem quasi-homogeneous, in the torus, thermal bath: Tristani
(2013);
Hydrodynamic limits:

▶ Formal derivation: Toscani (2004), Carlen-Chow-Grigo (2010);
▶ Spectral analysis of the linearized model: TR (2014);
▶ Pressureless-Euler limit: Jabin-TR (2016);
▶ Incompressible Navier-Stokes-Fourier with forcing: Alonso-Lods-Tristani

(2020).
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Rigorous limits On the Pressureless Euler Equation

Pressureless Euler system


∂tρ+ ∇x · (ρu) = 0,

∂t(ρu) + ∇x · (ρu ⊗ u) = 0.

Attract a lot of interest from the physics community because of its description of the
large scale structure of the universe: Silk-Szalay-Zeldovich (1983)

A rather delicate equation. Exhibits shocks because u (formally) solves Burgers
equation where ρ > 0 ⇒ concentration in ρ ⇒ ill-posed system!
Nevertheless, wellposedness theory exists by imposing semi-Lipschitz condition on
u: Bouchut-James (1999), Boudin (2000), Huang-Wang (2001-2004);
Model obtained as the hydrodynamic limit of the sticky particle model

▶ In dimension 1: E-Rykov-Sinai (1996), Brenier-Grenier (1998),
▶ In dimension 2: Berthon-Breuss-Titeux (2006), Chertock-Kurganov-Rykov

(2007).
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Rigorous limits On the Pressureless Euler Equation

One Dimensional Sticky Particles
→ Known results. Hydrodynamic limit of the one dimensional N–particles system with

sticky collisions8 towards the pressureless Euler equations9

(4)

{
∂tρ+ ∂x(ρ u) = 0,

∂t(ρ u) + ∂x

(
ρ u2) = 0.

→ Method. Convergence of the empirical density towards a monokinetic distribution,
using (among other arguments) the (microscopic) Oleinik property

sup
i∈{1,...,N}

(vi+1 − vi)+

(xi+1 − xi)+
<

1
t
,

where (xi, vi) represents the position and velocity of the ith particle at time t.

Convergence of the particle distribution function f(t, x, v) solution to the granular
gases equation towards the monokinetic density

f(t, x, v) = ρ(t, x) δ (x− u(t, x)) ,
where (ρ, u) solution to the pressureless Euler system (4)?

8after collisions, the two particles stick together and travel with their average velocity.
9E-Rykov-Sinai, CMP (1996); Brenier-Grenier, SINUM (1998).
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Rigorous limits On the Pressureless Euler Equation

Hydrodynamic Limit of the Granular Gases Equation
Theorem (P.-E. Jabin, TR, QAM 2017)
Consider a sequence of weak solutions fε(t, x, v) ∈ L∞([0, T ], Lp(R2)) for some p > 2
and with total mass 1 to the granular gases Eq. (1) such that for any k

sup
ε

∫
R2

|v|k f0
ε (x, v) dx dv < ∞, sup

ε

∫
R2

|x|2 f0
ε (x, v) dx dv < ∞,

and f0
ε is, uniformly in ε, in some Lp for p > 1

(5) sup
ε

∫
R2

(f0
ε (x, v))p dx dv < ∞.

Then any weak-* limit f of fε is monokinetic, f = ρ(t, x) δ(v − u(t, x)) for a.e. t, where
ρ, u are a solution in the sense of distributions to the pressureless system (4) while u has
the Oleinik property for any t > 0

u(t, x) − u(t, y) ≤ x− y

t
, for ρ a.e. x ≥ y.
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Rigorous limits The functional Lη,µ,k

A global, dissipated functional?
→ Setting. Assume that f ∈ L∞(R+, M

1(R2)) is a positive, bounded measure with
compact support in (x, v) ∈ [−R, R]2, and solves
(6) ∂tf + v ∂xf = −∂vvm/ε,

where m is an unknown positive measure in M1(R+ × R2).
→ A “new” functional.10 For any t ≥ 0, η > 0, k ≥ 1, µ > 0, define

Lη,µ,k(f)(t) :=
∫ (v − w)k+2

+

(x− y + η)k
χµ(x− y) f(t, x, v) f(t, y, w) dv dw dx dy

χµ(r)

µ r

1

0

10See also Bony (1987), Cercignani (1992), Biriuk, Craig, Panferov (2006)
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→ Setting. Assume that f ∈ L∞(R+, M

1(R2)) is a positive, bounded measure with
compact support in (x, v) ∈ [−R, R]2, and solves
(6) ∂tf + v ∂xf = −∂vvm/ε,

where m is an unknown positive measure in M1(R+ × R2).
→ A “new” functional.10 For any t ≥ 0, η > 0, k ≥ 1, µ > 0, define

Lη,µ,k(f)(t) :=
∫ (v − w)k+2

+

(x− y + η)k
χµ(x− y) f(t, x, v) f(t, y, w) dv dw dx dy

→ First observation. Let (xi(t), vi(t))1≤i≤N for N ∈ N a
solution to the sticky particles system and fN the
associated empirical measure. Then

0 ≤ Lη,µ,k(fN )(T ) ≤ CN,k.

χµ(r)

µ r

1

0

10See also Bony (1987), Cercignani (1992), Biriuk, Craig, Panferov (2006)
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Rigorous limits The functional Lη,µ,k

A More General Result

Theorem (P.-E. Jabin, TR, QAM 2017)
Consider a sequence fε ∈ L∞([0, T ], M1(R2)) of solutions to (6) with mass 1 for a
corresponding sequence of non negative measures mε. Assume that for any k

sup
ε

sup
t∈[0, T ]

∫
R2

|v|k fε(t, dx, dv) < ∞, sup
ε

sup
t∈[0, T ]

∫
R2

|x|2 fε(t, dx, dv) < ∞.

Assume moreover that fε satisfies a (technical) trace condition on t and that

sup
ε

sup
η,µ

Lη,µ,0(fε)(t = 0) < ∞.

Then any weak-* limit f of fε solves the sticky particles dynamics in the sense that
ρ =

∫
R f(t, x, dv) and j =

∫
R v f(t, x, dv) = ρ u are a distributional solution to the

pressureless system (4) while u has the Oleinik property for any t > 0

u(t, x) − u(t, y) ≤ x− y

t
, for ρ a.e. x ≥ y.
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Numerical Simulations
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Numerical Simulations Spectral methods for the Boltzmann operator

Spectral discretization of Boltzmann collision operator
If the distribution function f has compact support on B0(R), then
supp(Qe(f, f)(·)) ⊂ B0(

√
2R).

Thus, in order to write a spectral approximation which avoids aliasing, it is
sufficient that f(v) is restricted to [−T, T ]d with T ≥ (2 +

√
2)R.

Assuming f(v) = 0 on [−T, T ]d \ B0(R), we extend f(v) to a periodic
function on the set [−T, T ]d.
The choice T = (3 +

√
2)R/2 guarantees the absence of intersection between

periods where f is different from zero.
The distribution function is represented as the truncated Fourier series11

fN (v) =
N∑

k=−N

f̂ke
ik·v ∈ PN ,

f̂k = 1
(2π)d

∫
[−π,π]d

f(v)e−ik·v dv.

11where we took T = π and hence R = λπ with λ = 2/(3 +
√

2) for easier notations
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Numerical Simulations Spectral methods for the Boltzmann operator

Spectral discretization of Boltzmann collision operator II
We then obtain a spectral quadrature by truncating the Boltzmann operator
and projecting it onto the space of trigonometric polynomials of degree ≤ N :

Q̂k = 1
(2π)d

∫
[−π,π]d

QR
e (fN )e−ik·v dv, k = −N, . . . , N.

By substituting the Fourier transform of f in Q̂ one gets

Q̂k =
N
2 −1∑

l,m=− N
2

l+m=k

G(l,m)f̂lf̂m, k = −N, . . . , N,

where the weight G(l,m) is given by

G(l,m) =
∫

BR

e−i π
L m·g

[∫
Sd−1

B(|g|, σ · ĝ)
(
ei π

L
1+e

4 (l+m)·(g−|g|σ) − 1
)
dσ

]
dg.

The evaluation of Q̂ requires O(N2d) operations.
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Numerical Simulations Spectral methods for the Boltzmann operator

Fast spectral discretization 1/2
Hu, Ma, 2018

To reduce the complexity the key idea is to render the weighted convolution into a
pure convolution so that it can be computed efficiently by the FFT → low-rank
approximation of G(l,m):

G(l,m) ≈
Np∑
p=1

αp(l +m)βp(m),

where αp and βp will be determined later. Then

Q̂k ≈
Np∑
p=1

αp(k)
N
2 −1∑

l,m=− N
2

l+m=k

f̂l

(
βp(m)f̂m

)
.

Hence the total complexity to evaluate Q̂k (for all k) is brought down to
O(NpN

d logN), i.e., a few number of FFTs.
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Numerical Simulations Spectral methods for the Boltzmann operator

Fast spectral discretization 2/2
Hu, Ma, 2018
We first split G(l,m) into a gain term (not a convolution)

Ggain(l,m) :=
∫

BR

e−i π
L

m·g
[∫

Sd−1
B(|g|, σ · ĝ)ei π

L
1+e

4 (l+m)·(g−|g|σ)dσ

]
dg,

and a loss term (already a convolution!) that one can precompute:

Gloss(m) :=
∫

BR

e−i π
L

m·g
[∫

Sd−1
B(|g|, σ · ĝ)dσ

]
dg.

For the gain term, we use a Gaussian quadrature to obtain

Ggain(l,m) ≈
∑
ρ,ĝ

wρwĝ ρ
d−1e−i π

L
ρ m·ĝF (l +m, ρ, ĝ),

where the function F is given by

F (l +m, ρ, ĝ) :=
∫
Sd−1

B(ρ, σ · ĝ)ei π
L

ρ 1+e
4 (l+m)·(ĝ−σ)dσ.

The total complexity to evaluate Q̂k is O(MNd+1 logN), where M is the number of
points used on Sd−1 and M ≪ Nd−1
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Numerical Simulations Numerical Simulations

Trends to equilibrium (diffusively excited granular gas)
∂tf = Qe(f, f) + τ∆vf

0 20 40 60 80 100 120 140 160
t

10 4

10 3

10 2

10 1

(f|
f

)(t
)

0 25 50 75 100 125 150 175 200
t

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

T(
x)

Exact solution
Numerical solution

Initial data is a centered reduced Maxwellian, e = 0.95 with heat bath τ = 0.05.
Left: Semi-log plot of the relative entropy of f and f∞ = f(t = 100, v).
Right: numerical temperature (orange dots) and exact temperature (blue line).
Numerical parameters. N2

v = 64 × 64, Nρ = 32, Mĝ = 16, R = 20,
L = 5(3 +

√
2) and ∆t = 0.01.
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Trends to equilibrium (diffusively excited granular gas)
∂tf = Qe(f, f) + τ∆vf

0 5 10 15 20 25 30 35 40
t

10 5

10 4

10 3

10 2

10 1

100

(f|
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t

1
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T(
x)

exact solution
Numerical solution

Initial data is an indicator function, e = 0.5 with heat bath τ = 0.1.
Left: Semi-log plot of the relative entropy of f and f∞ = f(t = 100, v).
Right: numerical temperature (orange dots) and exact temperature (blue line).
Numerical parameters: N2

v = 64 × 64, Nρ = 32, Mĝ = 16, R = 20,
L = 5(3 +

√
2) and ∆t = 0.01.
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Numerical Simulations Numerical Simulations

Tail behavior
∂tf = Qe(f, f) + τ∆vf

6 4 2 0 2 4 6
v1

10 6

10 4

10 2

100

ln
f

(v
1,

0.
17

)

e = 0.5
e = 0.7
e = 0.3
y = 2.75|v1| + 2

4 3 2 1 0 1 2 3 4
v1

10 6

10 5

10 4

10 3

10 2

10 1

100
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f

(v
1,

0.
17

)

e = 0.5
e = 0.7
e = 0.3
y = 1.8|v1|3/2 + 0.7

Equilibrium profile of e = 0.3, 0.5, 0.7 with heat bath τ = 0.1.
Initial data is an indicator function.
Left: Semi-log plot of f∞(v1, 0.17) = f(t = 55, v1, 0.17) for Maxwell molecules.
Right: Semi-log plot of f∞(v1, 0.17) = f(t = 55, v1, 0.17) for hard spheres.
The red lines are the reference profiles.
Numerical parameters. N2

v = 128 × 128, Nρ = 32, Mĝ = 16, R = 20,
L = 5(3 +

√
2) and ∆t = 0.01.
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Haff’s cooling law
∂tf = Qe(f, f)
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e(|g|) = 0.4tanh(|g| 4) + 0.6
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T

Haff's cooling law for inhomogenous e.
Tnum with e = 0.2
Tnum with e(|g|) = 0.4tanh(|g| 4) + 0.6

Initial data is a shifted Maxwellian.
Left: plot of inhomogeneous e.
Right: comparison of temperature between constant e = 0.2 (dash line) and
e(|g| = ρ) = −0.4 tanh(ρ− 4) + 0.6.
Numerical parameters. N3

v = 32 × 32 × 32, Nρ = 30, Mĝ = 32, R = 8,
L = 5(3 +

√
2) and ∆t = 0.01.
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Conclusion

Open problems

AP scheme for the presureless Euler limit?
AP scheme for the quasi-elastic limit?
Rigorous multi-D hydrodynamic limit?

Thank you for your attention!
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